If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15=16t+4.9t^2
We move all terms to the left:
15-(16t+4.9t^2)=0
We get rid of parentheses
-4.9t^2-16t+15=0
a = -4.9; b = -16; c = +15;
Δ = b2-4ac
Δ = -162-4·(-4.9)·15
Δ = 550
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{550}=\sqrt{25*22}=\sqrt{25}*\sqrt{22}=5\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-5\sqrt{22}}{2*-4.9}=\frac{16-5\sqrt{22}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+5\sqrt{22}}{2*-4.9}=\frac{16+5\sqrt{22}}{-9.8} $
| 5·x-50=x+2 | | -6-7=-9+y | | 6/5=x+2/3 | | 3(4x+6)-8x=62 | | 6x-11/22=1 | | 4t-9=(t+5) | | 10x+35=5x+5 | | 7p+7=-28 | | ×-4y=2 | | X=5x-150 | | 5x-10°=170 | | 8x-28=x-21 | | X/2+1/6=x-1/3 | | X÷2+1/6=x-1/3 | | 5x+25=11x+1 | | |y|=5 | | 1/3x-5+23=x | | 4x+x+29=106.5 | | 8x+21=64 | | 5x+3(×+40)=0 | | X²-18x+10=0 | | f(2)=4-6 | | 1.5x^2-4x=0 | | 5x+3=3(2x+3 | | −3x−5=7x−75 | | 5(24+3y/2)+3y-(-3)=0 | | 4x+20°=120 | | 5(24+3y/2)+3y=-3 | | 4x-2x=x-7 | | 10x+4x=44 | | 4x-2x=x+7=x+7 | | 8x-1=5x=8 |